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Abstract 
Processor-in-Memory (PIM) architectures avoid the von Neumann bottleneck in conventional ma- 

chines by integrating high-density DRAM and CMOS logic on the same chip. Parallel systems based on 
this new technology are expected to provide higher scalability, adaptability, robustness, fault tolerance 
and lower power consumption than current MPPs or commodity clusters. In this paper we describe the 
design of Gilgamesh, a PIM-based massively parallel architecture, and elements of its execution model. 
Gilgamesh extends existing PIM capabilities by incorporating advanced mechanisms for virtualizing tasks 
and data and providing adaptive resource management for load balancing and latency tolerance. The 
Gilgamesh execution model is based on macroservers, a middleware layer which supports object-based 
runtime management of data and threads allowing explicit and dynamic control of locality and load 
balancing. The paper concludes with a discussion of related research activities and an outlook to future 
work. 

Keywords: Massively parallel systems, PetaFlops computing, resource management, locality, load balanc- 
ing. 
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1 Introduction 
The integration of COTS (commercial off-the-shelf) processing and memory components to  synthesize large 
high-end computing systems is a compelling and pervasive paradigm either through custom MPPs (e.g. CRI 
T3E, IBM SP2) or commodity clusters (eg. Beowulf, NOW), with the largest DOE ASCI and NSF PAC1 
installations of this form. Nonetheless, experience with these systems, which deliver Teraflops scale peak 
performance, strongly indicates that this approach is severely limited in its efficiency for many important 
types of application and furthermore that the cost, power, and space requirements make their deployment 
extremely expensive. While it is expected that these conventional systems will reach beyond 100 Teraflops 
and possibly 1 Petaflops by the end of the decade, they are unlikely to provide the foundation for future 
generation architectures delivering cost-effective and efficient sustained performance in the trans-Petaflops 
regime throughout the next decade. 

Although the attraction of exploiting mass-market commodity devices is compelling (some think imper- 
ative) the hard empirical evidence strongly indicates the contrary. Measured against peak floating-point 
performance (admittedly an arguable metric, but nonetheless widely used) , many instances of single-digit 
efficiencies have been observed for real-world applications on some of the largest parallel systems. There 
are two major reasons for this. First, computing exhibits two distinct classes of execution behavior and 
contemporary systems do not reflect this in their structure or operation. The first class of behavior relies 
on high temporal locality of data access, allowing efficient use of caches and registers. Conventional RISC 
microprocessors do handle this class well when spatial locality is also high. This class is compute intensive 
meaning the ratio of number of arithmetic operations performed on data to the number of load operations 
to acquire the operand data is ii 1. But the second class of behavior involves limited temporal locality with 
little or no data reuse and is memory intensive. Today’s conventional microprocessors handle this class very 
poorly and a significant part of both the cost and inefficiency of today’s systems is due to the ineffective 
means of performing memory intensive operations. The second reason that COTS technology is a poor 
building block for scalable parallel computing systems is that their architectures are not derived for this 
purpose; they are designed for sequential execution or as components of small SMP organizations. They do 
not have sufficient latency tolerance support and only limited hardware support for overhead tasks related 
to scalable parallel execution. The conclusion to  be drawn is that to make trans-Petaflops scale computing 
practical and widely available demands an alternate strategy than the integration of components that have 
been adeveloped for entirely different purposes. 

An emerging alternative that may contribute to  the solution of this important problem exploits processor- 
in-memory or PIM technology to provide the foundation for a new class of memory-oriented computing 
element. PIM is enabled by semiconductor fabrication processes which make possible the co-location of 
both DRAM (or SRAM) memory cells and CMOS logic devices on the same silicon die. PIM differs from 
System on a Chip (SoC), in that it connects logic directly to the wide row buffer of the memory stack. 
PIM provides the opportunity to  expose substantially greater memory bandwidth while imposing signifi- 
cantly lower latency and requiring less power consumption than conventional systems. This paper is an 
early presentation of the architecture and software strategy being developed for a new generation PIM-based 
high-end computer as part of the Gilgamesh Project conducted at the NASA Jet Propulsion Laboratory 
and the California Institute of Technology. The MIND (Memory, Intelligence, and Networking Device) 
PIM architecture extends previous PIM capabilities by incorporating advanced mechanisms for virtualizing 
tasks and data and providing dynamic adaptive resource management mechanisms for load balancing and 
latency tolerance. MIND chips can be employed in homogeneous configurations such that they provide the 
only computing resource or in more complex hierarchical structures with conventional or custom architec- 
ture external high-speed microprocessors to handle the high locality compute intensive tasks at higher speed. 

Developing a software infrastructure for Gilgamesh that combines support for a high level of abstraction 
with efficient object code generation is a hard problem. Gilgamesh is a massively parallel architecture that 
provides parallelism at three levels: (1) on-node, (2) across the nodes of a chip, and (3) across chips. Control 
of locality and load balancing, mapping algorithmic parallelism to the proper level of the architecture, and 
fault tolerance are key issues to  be considered in the design of a Gilgamesh software system. This paper 
focuses on the first of these topics. Locality plays an important role since off-chip references may incur a 
significant penalty in terms of latency and bandwidth (while multithreading is expected to hide the latency 
of off-node but on-chip accesses). Most relevant applications will display irregular and dynamic behavior, 
making the runtime system a central component of the software architecture. We address this issue by 
proposing a middleware layer, called the macroserver level, which supports object-based runtime manage- 
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ment of data and threads allowing explicit and dynamic control of locality and load balancing. Specific 
functionality deals with data parallel processing of large-scale distributed data structures which provides a 
major source for exploiting massive parallelism. Macroserver support distributed collections, a combination 
of a powerful data structuring concept with a generalized form of distribution and alignment. 

This paper is structured as follows. The Gilgamesh architecture and the MIND chip are described in 
Section 2. Section 3 outlines the salient features of macroservers and their role in the Gilgamesh software 
architecture, followed by the discussion of a generalized approach to  the processing of distributed collections 
in Section 4. We provide an overview of related work in Section 5 and conclude in Section 6 with some 
insights into current technical challenges and future work. 

2 The MIND PIM Architecture 
The goal of the MIND architecture is to provide the first truly general-purpose PIM device with support for 
virtual tasks and data in a distributed shared memory environment. The objective of the MIND design is 
to enable performance in the trans-Petaflops regime while significantly enhancing performance-to-cost and 
power efficiency compared to conventional structures and methods. The MIND architecture is targeted to  two 
classes of system organization, (1) homogenous arrays of interconnected MIND chips providing essentially all 
processing capabilities, and (2) heterogeneous structures comprising a combination of a MIND-based smart 
memory subsystem with external high performance microprocessors to  balance hardware support for compute 
intensive and memory intensive processing. The first class of system architectures, the homogenous array of 
MIND chips, is referred to as Gilgamesh (billions of Logic Gate Assemblies through MESH interconnect) after 
the NASA sponsored project that initially undertook to  develop the MIND architecture. The second class 
of system architectures include those employing external conventional microprocessors such as that being 
studied under a current project at Sandia National Laboratory and those incorporating external custom 
processor architectures such as the DARPA sponsored Cray Inc. Cascade project. This paper focuses on 
the Gilgamesh class of PIM-based system architecture and on the specific MIND PIM architecture under 
development at Caltech and NASA Jet Propulsion Laboratory. 

2.1 MIND Architecture Strategy 
Like other PIM-based systems, the MIND architecture exploits the opportunity for exposing a high degree 
of memory bandwidth by accessing an entire memory row at a time and by partitioning the total memory 
capacity of a chip into multiple independently accessible blocks. Through the combined data parallelism 
of a row-wide access (typically 2048 bits on a conventional DRAM chip) and multiple memory banks on a 
single MIND chip, peak memory bandwidth available on-chip may exceed by two orders of magnitude that of 
conventional systems off-chip bandwidth of comparable memory capacity. To take advantage of this available 
memory bandwidth, a wide ALU is tightly integrated with the row buffer of each memory bank to process row- 
wide data (under favorable conditions of spatial locality) in parallel to permit maximum memory throughput 
limited only by the raw DRAM technology cycle time. In addition to the high bandwidth, the tight coupling 
of wide ALU to row buffer permits low latency data accesses. While the degree of advantage may vary widely 
depending on the nature, form, and scale of the comparable conventional system, improvements of between 
a factor of four and ten may not be uncommon with respect to an access request from memory through the 
network, memory bus, and two levels of cache before a register load is completed. Because many memory 
oriented operations can be performed on the PIM chip itself, many of these data movements off chip need 
not occur and the power requirements can be significantly decreased. Also, because many of the memory 
accesses may be performed exclusively on-chip, the external chip interface bandwidth may be employed to 
greater effect, reducing contention due to conflicts for remote access. 

It should be noted that consistent with Moore's Law combined with expected increases in available 
memory chip area, memory capacity will continue to expand at approximately a factor of four every three 
years while DRAM cycle rates are improving at less than 10% per annum. With a moderate increase in 
microprocessor clock rate, it is projected that by the end of the decade it may take a hundred times as 
long, measured in clock cycle times, to touch every element on a memory chip as it does today. One of the 
important advantages of PIM is that it can mitigate this growing imbalance. So far, the aspects of the MIND 
architecture discussed are shared with other PIM architectures. But MIND, in fulfilling its role as a truly 
general purpose memory processing device, incorporates a number of advanced and interrelated capabilities 
not found or proposed together by other PIM architectures. These are now identified. 
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The MIND architecture manages a virtual name space that is shared among multiple MIND nodes 
(combination of a memory bank, wide ALU, registers, and control) on a given chip and across an array of 
MIND chips as well. Support for virtual to physical address translation is included as an intrinsic function 
of every node and works with a distributed directory table as well as local cached address mappings. Thus 
a full virtual address space shared across all MIND chips is supported. It is noted that the DIVA project at 
USC IS1 is also developing PIM architecture concepts in support of distributed shared memory. 

The MIND architecture employs an efficient light-weight protocol, referred to as parcels, in support of 
message-driven computation among MIND chips and their memory processor nodes. A parcel is a variable 
length communication packet that includes both argument values and action specifiers targeted to  a desig- 
nated destination. Simple loads and stores can be performed this way, of course, but so can more complex 
instantiation of remote tasks. Parcels allow work to be moved to  the data as well as more conventionally 
move data to the work. Under specific conditions, parcels can significantly improve efficiency of bandwidth 
resource usage and contribute to load balancing. But of equal importance is that parcels are a latency hiding 
mechanism, supporting decoupled computation. Various forms of parcel computation are being pursued by 
other PIM projects as well including the DIVA project, the University of Notre Dame’s PIM-lite project, 
and the work at the University of Delaware on percolation. Prior art includes but is not restricted to the 
MIT J-Machine project. 

The MIND architecture incorporates fine grain multithreading context switching mechanisms as an intrin- 
sic component of every memory-processor node on a MIND chip. While ordinarily hardware multithreading 
is employed as a latency hiding strategy (eg. MTA), MIND also uses multithreading as a mechanism for 
unifying management of local resources to simplify processor logic design and to  increase utilization of critical 
resources. It replaces several separate mechanisms ordinarily associated with conventional processor designs. 
Its hardware support for single-cycle context switching and prioritized threads permits efficient interleaving 
of operations from independent actions driving several different subcomponents of the node architecture. 
It also provides rapid response to incident parcels and exceptions as well as real time response to external 
signals. 

The MIND architecture includes some additional mechanisms to detect faults and isolate them. This 
occurs both on the memory-processor node boundaries and for certain classes of faults within an individual 
node. While not intended to achieve ”nonstop computing”, its partial coverage of the fault space enables 
the MIND architecture to deliver high reliability through graceful degradation rather than to suffer single 
point failures and catastrophic shut down. 

To provide the highest degree of usability, the MIND chip incorporates a parallel interface to  connect to 
conventional memory buses to permit integration with COTS systems such as workstations and servers. In 
its simplest form, such an arrangement does not permit full and general use of MIND chips but does make 
available some of the capabilities of PIM to such widely available systems. 

This paper will discuss several of these aspect of MIND in more detail while leaving others for future 
coverage. Specifically, virtual naming, parcel communication, and multithreading which are among the 
principle contributions of MIND to PIM architecture will be addressed more fully in the following sections. 

2.2 MIND Chip Architecture 
Here we give a brief overview of the MIND chip, its principle subsystems, and their interrelationships. The 
organization of the MIND chip (Fig.1) interconnects the memory/processor nodes to  each other, to  shared 
functional on-chip resources, and to external interfaces by means of an on-chip interconnection communica- 
tion network. The topology of this network depends on the number of nodes co-resident on the chip and the 
degree of redundancy required for a given level of reliability (through graceful degradation). 

The nodes, discussed in more detail below in Section 2.3, incorporate DRAM memory blocks and the 
logic and control required to provide access to the stored data and perform operations on them. These 
nodes provide all of the storage of the chip and most of the information processing capability as well as task 
execution control. Local wide registers of each node serve multiple roles including thread state, instruction 
cache, vector register, translation lookaside buffers, parcel buffers, and temporary memory row buffers. The 
node includes execution control for multiple threads with the state of each thread represented by an assigned 
wide register. The ALU of the node is wide and capable of performing multiple operations on separate fields 
simultaneously. The specific width of the ALU depends on the time/space tradeoff optimization performed 
as a number of register to register operations can be performed by the CMOS ALU in the time of a single 
full row DRAM access. The ALU instruction set includes basic logic functions, variable length integer 
operations, byte-level permutations, and dual operations. These last are described in the next section. Flow 
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control instructions, beside those common to every uniprocessor architecture, include thread management 
operations and parcel handling instructions. 

The external interfaces serve specific needs. The external System Memory Bus Interface (a parallel in- 
terface) provides the means for connecting MIND chips to conventional workstation and server motherboard 
memory buses. This interface permits MIND chips to  be treated as dumb memory or, through an address 
mapped protocol, to support higher functions to be performed by the MIND node logic on behalf of control- 
ling system processor(s) . The parcel interfaces (serial-parallel) support channels for active message-driven 
computation between MIND chips. Among other aspects of system operation, the parcel interfaces permit 
data management to  be performed entirely within the memory system. This is made possible through a 
parcel communication fabric that interconnects the MIND chips. It is anticipated that there will be multiple 
parcel ports to each MIND chip and that the parcel handler hardware can be employed directly as network 
routers. A chip data streaming interface (parallel) is also provided for rapid high bandwidth data movement 
on or off the chip. This can be used for access to  high speed secondary data storage or to remote sensing 
devices such as real time cameras. There are some additional signalling lines used for hardware reset and 
system interrupt. 

The MIND chip also incorporates pipelined floating point arithmetic units that are shared among the 
nodes by means of the on-chip communications interconnect. These can perform at approximately one 
Gigaflops each and are in addition to the floating point functionality that is achievable through multicycle 
operations within the nodes themselves. justification of the MIND chip architecture. 

Diagram - MIND Chip Architecture 

Stream and backing 
store I/O interface 

System memory 
bus interface 

Figure 1: MIND Chip Architecture 

2.3 MIND Node Structure 
The MIND node provides the core of the MIND operational capability integrating memory blocks with pro- 
cessing logic and control mechanisms. The processing logic of MIND is quite different from a typical core 
RISC processor, with much simpler control while incorporating very wide ALU logic and registers. The 
wide ALU is 256 bits wide to match the row segment width delivering DRAM bits every memory subcycle 
assuming a full row of typically 2048 bits. This is consistent with conventional DRAM desing and operation 
today. It can support multiple simultaneous SIMD style operations on separate byte fields but also provides 
operations on selected fields within a wide register delineated by a mask. The MIND ALU permits dual or 
paired operations on value fields associated with a key or a tag. Depending on a condition to  be satisfied by a 
key the corresponding value field may be modified allowing maximum throughput of the memory bandwidth 
for sweeping through large data blocks. The ALU does not provide an explicit floating point operation but 
can perform such operations in a small number of cycles and does so on multiple data pairs simultaneously. 
With today’s technology, a peak floating point throughput of 2 Gigaflops could be achieved per node, com- 
parable to  today’s microprocessors with much higher integer operation rates depending on operand size. 
This is justified by modest clock rates of 500 MHz, the width of the ALU, and the number of cycles required 
to perform a floating point multiply with the MIND node instruction set. Associated with the wide ALU 
is a permutation network which permits rearrangement of the bytes in a complete row. Many often used 
permutations can be accomplished in a single cycle, including alignments and one to many distributions. 
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As will be discussed below, the MIND node architecture incorporates a simple but effective multithreading 
instruction issue mechanism. A bank of wide registers can be used in a number of ways including as thread 
state. 

Figure 2: MIND node architecture 

Figure 3: MIND partitioning 

2.4 Optimal MIND Partitioning 
An important parameter of a MIND chip is the number of memory/processor nodes it contains. For a given 
DRAM fabrication process, a maximum memory capacity per chip can be assumed. As the number of nodes 
for a MIND chip increases, the amount of memory capacity per node decreases. In fact, the total memory 
per chip decreases because of spatial overhead: the amount of die area consumed by the implementation of 
the processing logic and interfaces per node. For data intensive computation, performance is proportional 
to sustained memory bandwidth which in turn is related to the concurrency of data access. For a given 
application exhibiting substantial parallelism, a measure of performance to  cost can be reflected by the ratio 
of the sustained memory bandwidth to the total die area dedicated to the system. Figure 3 shows a series of 
curves, each one representing a different level of application concurrency. The verticle axis is a normalized 
measure of this performance to cost metric. It is given as eflectaveness=(l - r s ) / ( s  + l ) ,  where T is a measure 
of application memory access concurrency and s is the independent parameter reflecting the memory per 
node. The horizontal axis is a normalized measure of the memory capacity per node which determines the 
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number of nodes for fixed user system memory capacity. The unity measure of memory capacity indicates 
that the space for both the user memory and the processor and interface logic are the same. The curves are 
derived from a statistical model of memory accesses and suggest that the optimal number of nodes is one for 
which less than half of the total area is dedicated to memory but well within the first order of magnitude. 
This is true for a wide range of application parallelism. and its derivation will be presented in the paper. 

2.5 Parcels 
The parcel is a lightweight active message [32] that permits efficient invocation of remote actions at a 
node on an external MIND chip. Parcels support message driven computation and permit split or decoupled 
operations, contributing to system-wide latency tolerance. They are made efficient through hardware support 
in the MIND architecture. 

A parcel is a variable length communication packet that contains sufficient information to perform a 
remote procedure invocation. The parcel can perform as simple a task as reading a remote virtual addressed 
location or as complicated as launching an entirely new long term distributed task or move large blocks of 
data between widely separated MIND chips. The semantic structure of the parcel is the same, even if the 
actual instantiation of the parcel including its length and contents may vary significantly. All parcels are 
targeted to a destination or receiver object. Except for low level operations on physical elements (context 
0), all parcel destinations are virtual addresses which may identify individual variables, blocks of data, 
structures, objects, or threads, as well as 1/0 streams. 

The parcel action specifier dictates the operations to be performed at the site of the destination object. 
The action specifier can be as simple as one of the basic instruction set operations such as load or add, or 
can identify a method (procedure) to  be executed upon receipt of the parcel. A parcel action can also be 
provided as a string of explicit operations, essentially carrying its own code. The parcel carries argument 
values with it. These may be used in performing the action or they may be part of a process that carries 
values on to  further locations. An example of the former is the value to  be written in to  the destination 
location. An example of the latter is in performing a gather operation across a number of widely distributed 
points to  ultimately be returned to the logical and physical site of execution within the MIND array. 

The final element of a parcel is the continuation; that part of the parcel that dictates what is to happen 
after the action of the parcel is completed. The continuation field could be as simple as a null. Here, all 
necessary information regarding follow-on work is encoded in the action specifier such as the method. Less 
trivial but still simple is the return field in the thread register where a remotely read value is to be installed. 
Often the action of a parcel results in the creation of one or more child parcels. There the continuation 
dictates that the original parcel be cloned one or more times but sent on to  new locations, perhaps carrying 
some intermediate values. Tree or graph traversal can be carried out this way without repetitious and costly 
returns to some single thread of control. 

Parcels include additional housekeeping fields needed for reliable transport, error detection, routing, and 
context management. A parcel can vary in length thus providing efficient handling of simple operations 
with small parcels and effective bandwidth utilization for moving large blocks of data. For example, in one 
design 64 bit parcels are used to examine and initialize hardware locations, while 256 bit parcels perform 
basic operations on virtually addressed data and a page of data in a succession of more than a hundred such 
parcel segments. 

The parcel handler is a simple subsystem associated with a node that operates semiautonomously. For 
some actions, it requires the support of no other subsystem of the node such as when it is engaged in scanning 
physical data paths and state for purposes of diagnositics, initialization, or reconfiguration. It may work 
directly with the local memory controller and address translation mechanism without engaging in the thread 
management and execution units. Finally, the parcel handler can use a parcel as the basis for instantiating a 
thread which will carry on the intended action. Upon completion of an action, one or more threads may be 
created and dispatched to remote (off chip) nodes. The parcel handler accepts a return parcel specification 
from the thread manager and launches it via the inter-MIND chip network. However, for a small subset of 
simple operations, the parcel handler itself is able to construct a resultant parcel, primarily from the original 
incident parcel. 

2.6 Virtual Address Handling 
An important advance of the MIND architecture is the direct handling of a virtual address space for dis- 
tributed shared memory. No PIM architecture has fully satisfied this requirement, choosing rather (and often 
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reasonably) to  simplify its operations with virtual data by out-sourcing the address translation problem to 
external conventional processors. But for efficient processing of complex irregular data structures specified 
by intrinsic meta data including virtual pointers, exploitation of the fine grain data parallelism requires that 
the MIND architecture node processors be able to  accept a virtual pointer and derive a physical location 
for the specified object. The current memory model is page based (nominally 4K bytes) and allows page 
placement policy to assign pages to any node of the MIND array. However, favorable placement reduces the 
time cost of access. The method employed by MIND bears some similarity to that used on the earlier CRI 
T3E and uses a combination of physical and associative mapping. 

The key to  the scheme is the distribution of the address directory table. The entry sets making up 
the directory table for groups of virtual pages are assigned to  MIND chips based on their physical names. 
MIND chips can be grouped such that they comprise an address domain. Any page in that domain will 
be represented in the directory table segment by means of a hashed table that points to all virtual pages 
for which it is either responsible or that are guest pages, those not the responsibility of the specific MIND 
chips in the domain but that are nonetheless stored there. For example, to satisfy some locality constraints, 
a guest page may be assigned to  an MIND chip outside the domain of the guest page’s virtual address. 
Preferential placement of a page is within its domain. Should that be satisfied, a parcel will know through 
partial direct mapping which set of MIND chips to go to and then will find the exact location of the targeted 
page. If the target page is a guest page of another domain, then a second hop is required before the parcel 
finally accesses its intended destination object. 

To expedite this process, MIND does not use a conventional fixed size TLB as these do not scale with 
system size. Rather, MIND exploits its wide registers and wide ALU as a fully associative TLB. More than 
one register can be used this way simultaneously. Instead of flushing the TLB for a still active context, 
the contents of the wide register performing the TLB function can be stored in the local main memory and 
restored to a wide register when the related activity is resumed. Another mechanism to be used is embedding 
both the virtual and physical address in the pointer of a large distributed data structure. With wide word 
access being performed in a single memory cycle both fields can be acquired at the same time. Once physical 
locations for the data structure elements are identified, they are buffered in the data structure itself, thus 
providing an automatic heuristic for rapid location of remote data. 

This technique does not satisfy all requirements for an advanced PIM architecture. For example, it 
does not allow words of individual pages to  be spread out among multiple MIND chips for maximum access 
bandwidth. It does not resolve conflicts with TLBs of conventional processors that might be integrated in a 
composite system. And similarly, it does not deal with the problem of cache conflicts associated with those 
same processors. While MIND does not have caches in the conventional sense, other devices in the system 
might. It is possible that the invalidate traffic required to maintain consistency may impose an unacceptable 
overhead burden on the system. Alternatively, disallowing caching in conventional processors of all data that 
may be manipulated by the MIND chip may have serious consequences for temporal locality. This is an area 
requiring further work. But the current method is adequate for the PIM-only systems such as Gilgamesh, 
which is the focus of this paper. 

2.7 Multithreaded Execution 
The MIND architecture incorporates fine grain multithreading to control the operation of its processor 
resources. Ordinarily, multithreading had been pursued as a powerful method for hiding system level latency. 
MIND takes advantage of this capability to hide the relatively short latencies within the chip, but relies 
on parcels to hide system-wide latency. The value of multithreading to  MIND is its uniform and simple 
mechanism for distributing fine grain actions to functional elements and for avoiding such problems as 
branch prediction, hazards, and forwarding. It also contributes to  keeping the memory blocks as busy as 
possible to  maximize their utilization. Thus multithreading is important to  the MIND architecture for 
improving the efficiency of the system and simplifying its design. It also provides a natural way to  provide 
rapid response to incident parcels with minimum delay. 

The multithreaded controller is a simple prioritized round-robin selector-controller. There are no special 
thread registers. Rather each thread resides in a MIND node wide register with part of the state of the 
thread stored in specified fields within the designated wide register. When a new thread is created, a wide 
register is allocated and the multithreaded controller is notified. The controller snoops the bus that loads 
certain fields within the wide register to  determine when the thread is ready to perform its next operation 
and which resources it will require. The multithreaded hardware controller performs the arbitration between 
thread requests and resource availability. Requests are classified in terms of priorities. Hard external signals 



such as reset get highest priority, context zero parcel requests get the next highest, exceptions the next, 
memory access the next, and regular operations the lowest priority. 

Thread state includes other than the explicit fields of the thread register. A stack frame can be created 
as part of the kernel heap on the local node memory and pointed to  from the thread register. The blocks of 
instructions are stored temporarily in wide registers and these are also pointed to from the thread register 
or to the code in memory. Other state including the object to  which the thread belongs, or ancillary value 
registers can also be employed. Threads can share some registers such as instruction registers. 

Threads are created, terminated and destroyed, or suspended and stored depending on program and 
resource requirements. A thread can be created by an incoming parcel or directly by another thread. In 
both cases, information from one wide register is rearranged in the fields of the new thread register which 
is assigned by the register supervisor. A thread may be activated as a result of a thread object that acts 
as a nexus for synchronization. Such an object, which includes the futures construct, determines when the 
precedence constraints for a thread has been satisfied and activites the thread then. Often this means the 
arrival of multiple parcels before the thread can begin. If the registers are over subscribed or a thread 
makes a long response time request, the thread may be suspended. The thread state of the wide register can 
be efficiently buffered in a single memory access cycle. Termination of a thread is trivial and involves the 
garbage collection of the thread register by the register supervisor. 

Multithreading in PIM was included in a simple form in the J-Machine and was considered more broadly 
by the HTMT project. The IBM Blue Gene and University of Notre Dame PIM-lite projects are including 
multithreading in different forms in those architectures. MIND continues this trend and expands the roles 
of multithreading in PIM design. 

0 

- 0  
0,0,-,- 

3 Elements of the Gilgamesh Execution Model 
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Figure 4: Gilgamesh execution model 
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Developing a software infrastructure for PIM-based parallel architectures that fulfils the promise of com- 
bining high programmer productivity with efficient object code is a hard problem which is currently not yet 
completely understood, partly because of the limited availablity of such machines. Here are three major 
issues that have to be resolved: 

0 Dealing with the tradeoff between locality and load balancing 
Gilgamesh is a shared-address space NUMA architecture, and while multithreading is usually able to 
hide the latency for off-node accesses within a chip, the penalty in terms of bandwidth and latency 
associated with off-chip references may be severe and must be taken into account when programming 
the machine. Finding the right tradeoff between locality and load balancing is a difficult problem whose 
solution must in general be approached heuristically depending on the architecture, the algorithm, and 
the input data. 

Each node of a MIND chip offers row-wide read/write access to  DRAM memory and parallel ALUs 
operating on wide words. This parallelism must be exploited by the compiler and runtime system if 
the bandwidth advantage offered by the chip architecture is not to be lost. A related problem is the 
efficiency of dealing with scalar operands. 

Exploitation of node parallelism 

0 Fault tolerance 
PIM-based architectures achieving PetaFlops performance will have chips numbering in the hundred 
thousands. While multiple nodes on a chip provide a natural redundancy that can be used to achieve 
fault tolerance on chips, the overall problem of achieving fault tolerance in hardware and software on 
systems of this size is a matter of on-going research. 

This paper addresses the first of these issues. Gilgamesh provides a middleware layer, called the 
macroserver level, which supports object-based runtime management of data and threads allowing explicit 
and dynamic control of locality and load balancing. Such control is necessary even for many regular appli- 
cations working on large distributed data aggregates but it is absolutely essential for advanced applications 
using irregular and dynamic data structures with dynamically varying access patterns, such as adaptive 
mesh refinement codes operating on semi-structured or unstructured grids. Fig.4 illustrates the role of 
macroservers in the Gilgamesh software architecture - as a link between high-level languages and very high- 
level specification systems on the one hand and the low-level software/hardware infrastructure on the other 
hand -, while Fig.5 provides a view of individual aspects involved in the control of locality and load balancing. 

Gilgamesh architecture - 
distribute / \  distribute 

align / 

Figure 5: An overview of distribution and alignment control in macroservers 

An overview of macroservers has been given in [34,35]; here we summarize the main ideas underlying this 
concept. The following Section 4 will then discuss a key aspect - distributed collections - more thoroughly 
and with a number of fairly detailed examples. 
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Applications execute as asynchronous networks of macroservers which are dynamic and distributed en- 
tities encapsulating variables, methods, threads, and external interfaces much in the sense of object-based 
computing but with enhanced functionality for performance-oriented computing on PIM-based systems. 
Macroservers provide a rich semantics for distributing data collections across the nodes of the architecture, 
including regular and irregular mappings, dynamic redistribution, and a facility for user-defined specialized 
classes supporting particular access methods and compilation strategies. Data alignment can be used to 
enforce co-location of elements in different data collections, while sets of threads representing a unit of work 
(such as a data parallel computation) can be aligned with the distributed collection of data on which they 
operate (Fig.5). 

A complex application may display parallelism at many levels of abstraction. For example, a multidis- 
ciplinary optimization for the design of an aircraft [26] will have a coarse-grain layer of heterogeneous task 
parallelism, involving components for structural analysis, aerodynamics, and optimization with respect to 
some objective cost function. Within a component, data parallel solvers for large-scale linear equation sys- 
tems may be used, while at still lower levels, the fine-grain parallelism of vector operations may be exploited. 
Macroservers provide a number of features for expressing such intricate structures of parallelism and to map 
them across the levels of parallelism offered by a Gilgamesh system. This includes 

a flexible recursive mechanism for creating threads, by spawning synchronous or asynchronous method 

0 futures [MI, which can be tied to threads at the time of creation and provide the means for dynamic sta- 
tus checks, synchronization, and result retrieval after termination. Threads live in user space managed 
by the macroserver, and axe therefore relatively lightweight. 

activations 

0 special semantics for local methods which are asserted to operate on a single node. Such methods 
can exploit the particular hardware functionality associated with nodes such as parallel operations on 
row-wide data arrangements, and collective operations implemented by the permutation network. 

The customers of the macroserver functionality will mainly be high-level language compilers and speci- 
fication systems: users will be expected to normally program at a higher level of abstraction, possibly in a 
directive-based extension of Fortran 95 or C/C++, or in an entirely new language. We expect that sophisti- 
cated compiler and runtime technology will establish the link from such a high-level API to the macroserver 
middleware - this is the topic of ongoing and future work. The macroserver functionality will be imple- 
mented using node servers and their networking via parcels. Node servers are mini objects that perform 
local functions on a node (see Fig.4). They are very close to the microservers advocated by work at the 
University of Notre Dame [SI and in the DIVA project [16, 171. 

4 Distributed Collections and the Generation of Data Parallel 
Code 

SPMD data parallel processing applied to large-scale distributed data structures provides a major source for 
exploiting massively parallel architectures. Macroserver support focuses on the concept of distributed eollec- 
tions, a combination of a powerful data structuring concept originally introduced in [29] with a generalized 
form of distribution and alignment as pioneered in languages such as Kali, Vienna Fortran, Fortran D, HPF, 
and HPC++ [25, 9, 13, 20, 191. 

4.1 Collections 
Collections, based on work by Sipelstein and Blelloch [29], are homogeneous or heterogeneous aggregates, cov- 
ering a broad range of methods for structuring, naming, and accessing data. They include multidimensional 
dense homogeneous arrays in the sense of Fortran or C, LISP list structures, sparse data structures, and sets. 
In order to be able to express distribution and alignment we assume that any collection, C, is associated with 
an index domain which provides an unambiguous name for its primitive elements. For example, the index 
domain of a Fortran array declared as REAL C ( N ,  M )  is the set of pairs {(i, j )  I 1 5 z 5 N ,  1 5 j 5 M } .  
As another example, the elements of tree or list structures can be named using a dot notation as illustrated 
in Fig. 7. If C denotes a collection, I its index domain, and i E I is arbitrarily selected, then we let C(i)  
represent the element of C identified by i. 
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4.2 Data Distribution and Alignment 
Large collections must be distributed across the nodes of the architecture. At the macroserver level, dis- 
tributions are expressed using a mapping to a parameterized abstract architecture, which is understood as 
a set of abstract nodes that communicate with each other via parcels using a communication network. No 
assumption about the communication topology is made. Abstract nodes are mapped by the low-level system 
software to  the underlying physical architecture; this mapping is transparent and may change dynamically, 
in particular as a result of component failures. 

A data distribution partitions the index domain of a collection into mutually disjoint equivalence classes 
called distribution segments. They are characterized by two properties: (1) a specific distribution segment 
defines a scope of locality by forcing all its elements to be mapped to  the memory of a single node called 
its owner, and (2) different distribution segments can be mapped to different nodes thus enabling parallel 
operation across these segments as long as no dependences are violated. Whereas (1) specifies a constraint 
on the virtual-to-physical mapping, (2) may affect the layout of a collection in virtual memory. 

We now describe these concepts in more detail using a simplified formal model. The set of nodes in the 
abstract architecture is denoted by P. A replication-free distribution of a collection C with index domain I 
is a total function JC : I + P which specifies for each index, i E I ,  the abstract node, S c ( i ) ,  to which C ( i )  is 
mapped. For every node p E P which owns at least one element of C we denote the associated distribution 
segment by AC(u) = {i E I I 6 ( i )  = u} .  Note that in order to avoid excessive formalism we use in this paper 
a simplified model which disallows replication of data across nodes. 

The above model does not restrict the structure of the index domain nor the kind of mapping specified 
by a distribution. As a consequence, distributions can not only express the regular variants of block and 
cyclic array distributions as defined in HPF-1 [20] and elsewhere, but also arbitrary regular or irregular array 
mappings including user-defined functions, as well as mappings of more general data aggregates. In many 
interesting cases, distributions will be computed dynamically, depending on the actual size of collections as 
well as runtime-specified access patterns (Section 4.3). 

An alignment establishes a cc-location constraint for corresponding elements in two collections. This can 
be highly useful for enforcing the locality of operations applied to multiple arguments, as discussed later 
(see Section 4.5.1). The correspondence can be expresssed using an alignment function, which establishes 
a relationship between the index domains of the two collections. Given the distribution of one collection 
and an alignment function, the distribution of the second collection (the alignee) can be determined. A 
simple but important case is identity alignment, where all elements of two collections with the same index 
are mapped to the same node. 

We discuss now three examples, covering the distributions of a dense array, a tree data structure, and a 
sparse matrix. In all cases we assume an abstract architecture with four nodes, P(1)  through P(4) .  While 
these are toy examples with regard to the sizes of data sets and the abstract architecture involved, they are 
meant to clarify the basic concepts behind the above definitions as well as their applicability to more general 
cases. 

Example: General Block Array Distribution 
Regular block as well as cyclic (round-robin) distributions [20] provide a simple and easily implementable 
mechanism which is adequate for many codes working on single structured grids. More complex “real” 
algorithms however, often solve PDEs on semi-structured or unstructured grids. Regular distributions, when 
applied to such grids, may result in severe load imbalances and large communication overheads since the 
closeness of data elements in the program representation may not reflect their locality in the underlying 
physical domain. 

General block distributions represent a simple generalization of regular block distributions by allowing a 
variable block size while retaining the contiguity of the index subdomain associated with each distribution 
segment. In combination with array element reordering general block distributions can be used to deal with 
unstructured grids. Fig.6 provides an example for a one-dimensional array A(l  : 12). The associated distri- 

‘Note that this model distinguishes only local (intra-node) and nonlocal (inter-node) accesses, ignoring references to off-node 
data on the same chip. This simplification is based on the assumption that multithreading will hide the latency of such accesses. 

2Replication can play an important role for achieving redundancy in the context of a fault model, or for reducing commu- 
nication at the cost of additional processor cycles. It is supported by macmservers. 
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bution segments are given as X(1) = [l : 51, X(2) = [6 : 71, X(3) = [8 : lo], and X(4) = [11 : 121. 0 

1 j 2  1 3  j 4  j 5  
. .  . .  . .  ... . . .  . . .  . .  .... ... . .  . .  . .  

. .  
_. . 
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.: 

'.. 
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Figure 6: A general block distribution 

Example: Distribution of a tree data structure 
Fig.7 shows an example for the distribution of a tree data structure. The box style specifies the mapping, 
yielding the distribution segments X(1) = {l,l.l, 1.1.1,1.1.1.1}, X(2) = {1.2,1.2.1,1.1.2}, X(3) = {1.3,1.3.1}, 
and X(4) = {1.3.1.1,1.3.1.2,1.3.1.3}. 0 

n 

- x --x 

/ d 1.1.1.1 

,../ .... .... \ .... . .  
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. . . . . . . .  
: P(4) ......... 

Figure 7: A tree distribution 

Example: Sparse Matrix Distribution 
Consider a sparse matrix A(n, m) as given in Fig. 8. The elements whose value is 0 are represented by empty 
boxes; the non-zero elements are explicitly specified and numbered in row major order (for simplicity, we 
have chosen as the value its position in this numbering scheme). The distribution is irregular, based on the 
contents of the matrix: the goal is to have (approximately) the same number of nonzero elements in each 
distribution segment. 

In the figure we have n = 10 and m = 8. The four distribution segments are given as X(1) = [l : 7 , l  : 51 
with nonzero elements (1,2), (3,1), (5,4), (6,5); X(2) = [8 : 10,l : 41 with nonzero elements (9,2), (9,3), 
(10, l), (10,4); X(3) = [l : 7,6 : 81 with nonzero elements (2,7), (3,8), (4,6), (7,7); and X(4) = [8 : 10,5 : 81 
with nonzero elements (8 ,5) ,  (8,8), (9,5), (10,7). 

A parallel sparse matrix vector multiply algorithm based on this distribution and a special representation 
of the distribution segments will be discussed in Section 4.5.2. 0. 

4.3 Distribution and Alignment Objects 
In the above discussion distributions were only mentioned in the context of collections to which they were 
applied: given the index domain, I, of a collection and an abstract architecture, P ,  we introduced distri- 
butions as total mappings, 6 : I -+ P. But collections and distributions are orthogonal concepts: we can 
interpret 6 as a distribution object coming into existence by applying a general mapping rule to I and P its 

actual arguments. Consider the following example. The cyclic or round robin distribution can be specified 
in a closed form, using the expression 

3Nodes are identified by their number only. 
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Figure 8: Sparse matrix distribution 

cyclic(i)= (i-1) mod k +1 for all i ,  1 5 i 5 n. 

Here, IC (denoting the number of abstract nodes) and n (for size of an array dimension) are formal pa- 
rameters, while i is a locally bound variable. This expression can be understood as a template representing 
the class of all distributions fitting that pattern: combining the template with an arbitrary one-dimensional 
array index domain of a collection, and an arbitrary abstract node set gives us a specific distribution object 
as introduced in the previous section. In general, a user may define such a template explicitly in a way 
similar to that of specifying a procedure [9]. 

Based on this observation we outline an approach to dealing with data distribution in an object-based 
framework [9, 361: 

1. Distribution classes can be introduced as templates parameterized by two index domains: one associ- 
ated with a collection and the other with an abstract architecture. The instantiation of such a template 
with concrete domains yields a distribution object that specifies a mapping, 6, as discussed above. A 
distribution class can be applied to different pairs of index domains, and a given distribution object 
can be bound to different conforming collections and abstract architectures. 

2.  A distributed collection is a pair ( A ,  S), where A is a collection and S is a conforming distribution. 

3. Intrinsic methods for distribution objects include those for (1) establishing a binding between collection 
and a distribution object (the nature of this binding is inherently dynamic), (2) the mapping from an 
index in the collection domain to a node and a local address on that node, (3) the computation of the 
distribution segment for a node, and (4) various inquiry functions regarding specific properties of the 
mapping. 

4. Our approach provides functionality for the construction of a library of intrinsic distribution classes. 
Such templates are characterized by assertions about the collections to which they can be applied and 
the associated mapping procedure; in addition they may provide specialized auxiliary data structures 
as well as compilation and runtime methods. Existing libraries may be bound to such a class. 
The discussion of a sparse matrix vector multiply operation in Section 4.5.2 illustrates the idea behind 
this approach more concretely. 

5. Alignment can be understood as a specific distribution constructor function. Examples for other such 
constructors include incremental redistribution operators as often required for irregularly distributed 
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collections. In a more general context, alignment objects can be introduced similarly to distribution 
objects. 

4.4 

Consider a distributed collection (A, 6) at a given point in time during program execution. As a result of a 
redistribution which may be triggered by entering a new program phase with modified access patterns (such 
as in an AD1 [24] algorithm or an adaptive mesh refinement code), A will be bound to  a new distribution, 
say 6’. The transition from (A, 6) to  ( A ,  6’) is an expensive runtime operation which requires communication 
between all abstract nodes involved in 6 and 6’. We expect that the lightweight parcel mechanism in 
the Gilgamesh architecture as well as direct hardware support for on-node permutation will make such an 
operation less expensive and thus more freely usable than on a conventional multiprocessor. 

Since redistribution may be performed under an arbitrary control structure, static compiler analysis is 
generally unable to determine the actual distribution to which a given collection is bound - in fact, a collec- 
tion may be associated with more than one distribution at a given point of the program. As a consequence, 
the binding of collections to  their distributions is a runtime action, and a representation of the distributed 
collection must be kept and managed at runtime. Distribution descriptors serve that purpose. Ignoring 
special conventions and assuming for simplicity that we deal with dense arrays, such descriptors contain in- 
formation about the index domain of the array (this may be a multi-dimensional structure), the index domain 
of the abstract architecture, and the specification of a distribution function for each distributed dimension. 
Distribution descriptors are generalizations of layout descriptors as used in HPF compilation systems (see, 
for example [6]); they may also contain information about access patterns (iterators) and assertions related 
to optimization. Finally, a distribution descriptor may be used to actually guide the dynamic generation of 
communication, using its encoded knowledge of the distribution and the collection and architecture index 
domains. 

Runtime Management of Distributed Collections 

Looking at the situation from the viewpoint of a distribution object we see that each such object may be 
associated with more than one conforming array. As a consequence the management of distributed collections 
can be simplified and memory can be saved by separating the representation of distribution objects from 
that of collections. 

4.5 

In this section we use two examples to illustrate how some of the concepts introduced above interact and 
to outline how a data parallel code can be mapped to the Gilgamesh architecture. In the first example, 
we show how a simple vector code may be mapped to parallel threads operating in nodes of a Gilgamesh 
abstract architecture. The second example reuses the sparse matrix introduced in Section 4.2 and outlines 
the generation of a parallel code based on a specialized representation. This code fragment shows, based 
on an informal HPF-like syntax, the declaration of macroserver classes, their instantiation, the spawning of 
threads and their linking to futures, and the dynamic establishment of affinity between a set of data parallel 
threads and a distribution. 

Putting Things Together: Two Examples 

4.5.1 Vector Manipulation 

Consider a fragment of a vector code consisting of a vector add followed by a sum reduction. The vectors 
are represented by one-dimensional equal-shaped and identically aligned real arrays A, B ,  and C, which are 
general block distributed as shown in Fig.6. The variable S is asumed to be replicated across all nodes. 

NODES :: P(4) 
REAL :: A(12), B(12), C(12) DISTRIBUTE (GENBLOCK(5,2,3,2)) T O  P(l:4) 
REAL :: S 

A = B + C  
S = SUM(A) 

! This introduces the abstract node a m y .  

. . .  

. . .  

This specific code can be fully analyzed at compile time. The specification of the distribution leads to  the 
generation of a distribution object, whose descriptor, d, in a simplified version can be represented as: 
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d = (array-xdomain = ([1:12]), node-xdomain = ([1:4]), dist = A) 

Here, X is given as in Fig.6. The resulting distributed collections are (A, d) ,  ( E ,  d) ,  and (C, d). The execution 
of this code is initiated by spawning four parallel threads, T(u) ,  1 5 u 5 4, where T(u)  runs on node P(u) ,  
operating on the local data stored in this node (Fig.9). This assumes an affinity relationship between the 
code stored on a node and the data owned by the node. The actual machine-level code will initiate the data 
parallel operation by broadcasting a parcel parameterized by the node identification to  all nodes involved in 
the operation. 

Each thread T(u)  executes a parameterized program 

where the first statement is purely local, whereas the sum reduction is a collective operation with commu- 
nication involving all nodes. 

A 

B 

C 

... 

... , ... 

I 

Figure 9: Parallel execution of a vector operation. 

We add two remarks. First note that the code executed on each node is parallel in its own right, with the 
degree of local parallelism depending on the number of array components in the distribution segment. A 
Gilgamesh node can exploit this parallelism via its capability for loading and storing whole rows of memory, 
and by using the multiple ALUs on each node to  perform component operations in parallel. Moreover, special 
hardware supports the efficient computation of the partial sum on each node. 

Second, the code generated for this example would be the same independent of the actual distribution 
chosen for the arrays as long as they remain identically aligned. The only change occurs in the descriptor 
of the distribution object, d. However, if the three vectors were individually distributed and not aligned, 
explicit communication would have to be inserted for each component operation. 

4.5.2 Sparse Matrix Vector Mult iply 

This case study is based on a specific data parallel approach to  a sparse matrix vector multiplication originally 
proposed in [31]. We outline the sequential algorithm, discuss the distribution and representation of the 
matrix in the memory of a Gilgamesh system, and subsequently formulate a pseudocode for a data parallel 
algorithm within our framework. 

Sequential Algori thm 

Consider the operation S = A B ,  where A(l  : N ,  1 : M )  is a sparse matrix with q nonzero elements, and 
E(l : M )  and S ( l  : N )  are vectors. The nonzero elements of A are enumerated using row-major order. An 
example for such a matrix has been already discussed in Section 4.2 and illustrated in Fig.8. 
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In the Compressed Row Storage (CRS) format, A is represented by three vectors, D,  C, and R: (1) the data 
vector, D ( l  : q ) ,  stores the sequence of nonzero elements of A ,  in the order of their enumeration; (2) the 
column vector, C ( l  : q ) ,  contains in position k the column number, in A, of the k-th nonzero element in A; 
and (3) the row vector, R ( l  : N + l), contains in position i the number of the first nonzero element of A in 
that row (if any); else the value of R(i+l). R(N + 1) is set to q + 1. Based upon this representation, the 
core loop of the sequential algorithm can be formulated in Fortran as shown in Figure 10. 

INTEGER :: C(q), R(Nf1) 
REAL :: D(q), B(M), S(N) 
INTEGER :: I, J 

DO I = l ,M 
s (I) =o.o 
DO K = R(I), R(I+l)-1 

ENDDO K 
S(1) = S(1) + D(K)*B(C(K)) 

ENDDO I 

Figure 10: Sparse matrix vector multiply: core loop of sequential algorithm 

Distributed Sparse Representation 

The first step in developing a parallel version of the algorithm consists of defining a distributed sparse 
representation of A.  This essentially combines a data distribution with a sparse format such as, in our case, 
CRS. The distributed sparse representation is then obtained by representing the submatrices constituting 
the distribution segments in the CRS format. Fig.11 extends the distribution of our matrix A as introduced 
in Fig.8 by the CRS representations of its distribution segments. 

Macroserver-Based Parallel Algorithm 

Based upon this representation we can derive a parallel algorithm for the sparse matrix vector product, as 
outlined in Figure 12. In order to keep this algorithm relatively simple, we focus on the local submatrix- 
subvector product and omit the actual partitioning algorithm as well as details such as dynamic array 
allocation and the computation of the final global sum. 

The local matrix-vector product is computed in the method mat-wec-loc, which is activated as a separate 
thread, T(u) ,  in each node u. The distribution segments are given as A, = A(Ll(u) : Ul(u), L2(u) : UZ(u)),  
based on their global bounds, and q(u) provides the number of nonzero elements in A,. Furthermore, we 
assume that the components of the CRS representation for A, are given by the array sections D(u, 1 : q(u)), 
C(u, 1 : q(u)), and R(u,Ll(u)  : Ul(u) + 1). Finally, each thread T(u)  stores its contribution to  the partial 
sum in the temporary vector TS(u ,  1 : N ) .  

The algorithm begins by creating the macroserver my-sparse, based on the class definition sparse-template. 
In the next step, the sparse matrix is generated and distributed, creating a distributed sparse CRS format. 
As a result of this step, the local representations D(u, :), C(u, :), and R(u, :) as well as all the auxiliary data 
structures such as the arrays L1, U1, L2, U2, and q are set up. Once this is done, the NNthreads T(u)  can be 
generated. They compute partial vectors which are stored in TS(u, :). Finally, the TS(u, :) are combined in 
a global sum to determine the h a 1  result vector, S. As mentioned in the previous example, any parallelism 
present in the algorithm at the thread level can be exploited locally on the node. 

The vector B is distributed in some appropriate way which is not further specified here, and no commu- 
nication involving B is included. 

5 Related Work 
Research experiments with semiconductor devices that merged both logic and static RAM cell blocks on the 
same chips have been conducted for more than a decade. Even earlier, simple processors and small blocks of 
S U M  could be found on control processors for embedded applications, and of course modern microprocessors 
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include high speed SRAM on-chip caches. Early projects include the J-Machine [ll] and TERASYS [14] 
as well as EXECUBE [23], the first DRAM-based chip supporting a hypercube multiprocessor. But it 
was not until recently that industrial semiconductor fabrication processes made possible tightly coupled 
combinations of logic with DRAM cell blocks, bringing relatively large memory capacities to PIM design. 
A host of research projects has since been undertaken to explore this new design and application space. 
PIM is being pursued as a means of accelerating array processing in the Berkeley IRAM project [28], and for 
providing a smart memory in conventional systems in the FlexRAM and DIVA projects [21,16,17]. It has also 
been considered for the management of systems resources in a hybrid technology multithreaded architecture 
(HTMT) for ultra-scale computing [30]. In 1999, IBM announced the Blue Gene (BG/C) project [2, 31. 
Similar to Gilgamesh Blue Gene is based on PIM nodes with multithreading technology; unlike Gilgamesh it 
does not support global virtual memory and uses a conventional approach towards communication. The Blue 
Gene project has already developed a software infrastructure for the system without access to real hardware, 
based on the ISA specification and an instruction-level simulator. Another recent development is a streaming 
supercomputer based on PIM technology currently developed at Stanford University [12]. Multithreading as 
well as a variant of parcels are also used in PIM-based developments at Notre Dame University [8]. Parcels 
have been also been employed in various forms by the DIVA project [16, 17); they were first conceptualized 
for the HTMT Petaflops architecture project [30]. 

Macroservers have their roots in the Opus language [26] developed jointly at ICASE, NASA Langley 
Research Center, and the University of Vienna. Opus provides a hybrid programming model for expressing 
multidisciplinary applications focusing on shared abstractions (SDAs) , which establish an object-based layer 
on top of HPF. Other languages contributing to the design of macroservers include Orca [5], Agora [7], 
Concurrent C++ [22], pC++ [33], and the actor model of computation [l]. Collections were introduced in 
[29]. Distribution and alignment as attributes of dense arrays were proposed in many languages emerging 
during the 199Os, including Kali, Vienna Fortran, Fortran D, HPF, and HPC++ [25, 9, 13, 20, 191. The 
idea of user-defined distributions first originated in Kali [25] and was then put into a more concrete form 
in Vienna Fortran [9]. A more complete discussion of the generalized approach outlined in this paper for 
macroservers can be found in [36]. Work on the implementation of macroservers can draw in part on a rich 
body of experience with university prototypes as well as industrial software systems that were developed 
around the languages mentioned above, in particular implementations of HPF-like languages for distributed- 
memory systems (see, for example [lo, 15,6]). The last of these papers contains an extensive set of references 
to related compilation work. 

6 Conclusions and Future Work 
This paper presented salient design aspects of the Gilgamesh hardware architecture and its execution model. 
A base level MIND architecture is currently being prototyped using a specially designed testbed prototype 
board containing four high density FPGAs and 8 MB of SRAM to represent two MIND nodes and their 
on-chip interconnects. The parcel transport layer is provided by conventional Firewire interfaces. While the 
prototype board operates at one tenth the speed of what an actual chip would be capable of and is on a 
completely different fabrication density than an IC, its performance is at least a thousand times greater of 
a gate level cycle-by-cycle software simulator and its flexibility for rapid prototyping greatly exceeds that 
of the conventional IC design and fabrication cycle. This platform will allow early development of low level 
runtime system software to support the mechanisms and policies required to realize the dynamic adaptive 
operation of the system and management of virtual data and task objects. This will give us an accurate 
measure of time and space costs for implementing such fine-grain capabilities. 

Current software activity focuses on a revised specification of macroserver functionality along the lines 
described in this paper and including the new set of features centered around distributed collections. We also 
develop a directive-based extension of Fortran 95 as a first user API, and analyze the associated compilation 
and runtime technology. While existing work, in particular for HPF-like languages provides a starting point, 
the generality of the macroserver approach implies the need for significant additional research and practical 
experiments in this area. 

The study of PIM behavior must be supported - like that of any other parallel system -by a sophisticated 
set of software tools for performance analysis and high-level debugging. The light-weight thread mechanism 
provided by the Gilgamesh hardware suggests the deployment of persistent monitor threads for delivering 
performance information, checking program and system invariants, and performing behavior auditing for 
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detecting unusual program behavior. The feedback provided in this way can be also used for debugging, 
dynamic program tuning and fault analysis and recovery. In particular the last item represents an issue of 
central significance for future PIM-based PetaFlops systems: it will require an integrated hardware/software 
approach to address this critical problem in a manner which makes such systems viable. 

The future role of PIM-based architectures will be decided in the context of other developments such 
as smart caches in conventional systems, the fast growth of memory system sizes, SMPs on a chip and the 
approach of the billion-transistor chip. It seems safe to say that the Gilgamesh architecture will make a 
significant contribution on the path to Petaflops computing and beyond. 
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INTEGER NN = number_ofnodes() 
NODES P(NN) 
MACROSERVER CLASS sparsefemplate 

! number of nodes available for this applacataon 
! abstract node array 

INTEGER :: u 
REAL, SPARSE (CRS(Ll,Ul,L2,UZ,D,C,R,q ,... ),P) :: A(N,M) 
INTEGER :: Ll(NN), Ul(NN), LZ(NN), UB(NN), q(NN) 
REAL :: D(NN,:), C(NN,:), R(NN,:) 
REAL, DISTRIBUTE (...,:) T O  (P) :: TS(NN,:) 
REAL, DISTRIBUTE (...) T O  (P) :: B(M) 
REAL :: S(N) 
FUTURE :: T(NN) 

CONTAINS 

METHOD generateandpartition() 

END METHOD generateandpartition 

METHOD mat-vecJoc(u,D,C,R) 
REAL :: D(q(u)) 
INTEGER :: C(q( u)), R( L1 (u):Ul (u) + 1) 
INTEGER :: I, K 

! Genemtes matrix, determines MRD partition, and sets up the distributed data strzlctures and auxilaary data 

D O  I = Ll(u),Ul(u) 
TS(u,l:N) = 0.0 
DO K = R(I), R(If1)-1 

ENDDO K 
TS(u,I) = TS(u,I) + D(K)*B(C(K)+LZ(u)) 

ENDDO I 
END METHOD mat-vecloc 

METH 0 D global sum ( ) 
! Performs global reductions to compute final result vector, stored in S, from the temporary vectors TS(u,:). 
! This is a parallel algorithm that uses the future varaables bound to the threads generated 
! an the matrix-vector routine for synchronization. 

END METHOD globalsum 

METHOD matrix-vector() 
! Create on each node a thread executing a parameterized version of mat-vec-loc. Provide 
! arguments that point to the local distribution segments. 

FORALL THREADS (u=l:NN, ON HOME (A(Ll(u):Ul(u),LZ(u):UZ(u))) 
T(u) = SPAWN (mysparse%mat-vecloc,u,D(u,:) ,C(u,:),R(u,:)) 

END METHOD matrix-vector 
E N D  MACROSERVER CLASS sparse-template 

! Main program 
MACROSERVER (sparse-template) mysparse = 
CALL mysparse%generateand-partition() 
CALL mysparse%matrix-vector() 
CALL mysparse%global-sum() 

CREATE (sparse-template) 

Figure 12: Parallel sparse matrix-vector multiply using macroservers 
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